New Book: No-Blackbox, Secure, Efficient AI and LLM Solutions
Large language models and modern AI is often presented as technology that needs deep neural networks (DNNs) with billions of Blackbox parameters, expensive and time consuming training, along with GPU farms, yet prone to hallucinations. This book presents alternatives that rely on explainable AI, featuring new algorithms based on radically different technology with trustworthy, auditable, […]
Read More
Cybersecurity Use Case: AI Agent for Anomaly Detection
The case discussed here concerns fraudulent paid clicks to defraud a Google advertiser. The sophisticated click fraud scheme involving clicking viruses, data centers and other means, is undetected by Google. I worked with the law firm involved in the litigation, to build an agent able to pinpoint the sources of fraudulent traffic. The agent processes […]
Read More
How to Build and Optimize High-Performance Deep Neural Networks from Scratch
With explainable AI, intuitive parameters easy to fine-tune, versatile, robust, fast to train, without any library other than Numpy. In short, you have full control over all components, allowing for deep customization, and much fewer parameters than in standard architectures. Introduction I explore deep neural networks (DNNs) starting from the foundations, introducing a new type […]
Read More
Watermarking and Forensics for AI Models, Data, and Deep Neural Networks
In my previous paper posted here, I explained how I built a new class of non-standard deep neural networks, with various case studies based on synthetic data and open-source code, covering problems such as noise filtering, high-dimensional curve fitting, and predictive analytics. One of the models featured a promising universal function able to represent any […]
Read More
How Synthetic Primes Reveal the Quantum States in the Riemann Hypothesis
This research paper showcases spectacular discoveries across multiple disciplines. The main question — yet unanswered — is how the mathematical engineering behind the scenes could be applied to modern AI, deep neural networks (DNNs) and LLMs in particular, to dramatically accelerate the convergence of some slow algorithms. Most notoriously, the laborious and expensive training attached […]
Read More
10 Tips to Boost Performance of your AI Models
These model enhancements techniques apply to deep neural networks (DNNs) used in AI. The focus is on the core engine that powers all DNNs: gradient descent, layering and loss function. Reparameterization — Typically, in DNNs, many different parameter sets lead to the same optimum: loss minimization. DNN models are non-identifiable. This redundancy is a strength that […]
Read More
A New Type of Non-Standard High Performance DNN with Remarkable Stability
I explore deep neural networks (DNNs) starting from the foundations, introducing a new type of architecture, as much different from machine learning than it is from traditional AI. The original adaptive loss function introduced here for the first time, leads to spectacular performance improvements via a mechanism called equalization. To accurately approximate any response, rather […]
Read More
New Book: 0 and 1 – From Elemental Math to Quantum AI
The book is available on our E-store, here. It all started with the number 1. This e-book offers a trip deep into the most elusive and fascinating multi-century old conjecture in number theory: are the binary digits of the fundamental math constants evenly distributed? No one even knows if the proportions of ‘0’ and ‘1’ […]
Read More
Quantum Dynamics, Logistic Map, and Digit Distribution of Special Math Constants
Using the logistic map instead of the base quadratic system as in paper 53 (here), I obtain very similar quantum dynamics, this time for the function sin2(√x) instead of exp(x). When x is a small integer or a product of consecutive primes, my framework reveals new insights on the digit distribution of major math constants. […]
Read More
10 Must-Read Articles and Books About Next-Gen AI in 2025
You could call it the best kept secret for professionals and experts in AI, as you won’t find these books and articles in traditional outlets. Yet, they are read by far more people than documents posted on ArXiv or published in scientific journals, so not really a secret. Actually, one of these books is also […]
Read More
You must be logged in to post a comment.