
Easy Trick to Debias GenAI Models: Quantile Convolution
- Vincent Granville
- November 26, 2023
All of the GenAI apps that I tested, including my own, have the same problem. They cannot easily generate data outside the observation range. As an example, let’s focus on the insurance dataset discussed in my new book. I use it to generate synthetic data with GAN (generative adversarial networks) and the NoGAN models discussed […]
Read More
NoGAN: Ultrafast Data Synthesizer – My Talk at ODSC San Francisco
- Vincent Granville
- November 16, 2023
My talk at the ODSC Conference, San Francisco, October 2023. Includes Notebook demonstration, using our open-source Python libraries. View or download the PowerPoint presentation, here. I discuss NoGAN, an alternative to standard tabular data synthetization. It runs 1000x faster than GAN, consistently delivering better results according to the most sophisticated evaluation metric, implemented here for […]
Read More
New Book: Statistical Optimization for Generative AI and Machine Learning
- Vincent Granville
- October 7, 2023
With case studies, Python code, new open source libraries, and applications of the GenAI game-changer technology known as NoGAN (194 pages). This book covers optimization techniques pertaining to machine learning and generative AI, with an emphasis on producing better synthetic data with faster methods, some not even involving neural networks. NoGAN for tabular data is […]
Read More
NoGAN: New Generation of Synthetic Data (Video)
- Vincent Granville
- September 28, 2023
My talk at the Generative AI Conference, London, September 2023. View or download the PowerPoint presentation, here. I introduce a new, NoGAN alternative to standard tabular data synthetization. It is designed to run faster by several orders of magnitude, compared to training generative adversarial networks (GAN). In addition, the quality of the generated data is […]
Read More
GenAI: Fast Data Synthetization with Distribution-free Hierarchical Bayesian Models
- Vincent Granville
- September 22, 2023
Deep learning models such as generative adversarial networks (GAN) require a lot of computing power, and are thus expensive. Also, they may not convergence. What if you could produce better data synthetizations, in a fraction of the time, with explainable AI and substantial cost savings? This is what Hierarchical Deep Resampling was designed for. It […]
Read More
New Python Library to Evaluate AI-generated Data and Compare Models
- Vincent Granville
- September 19, 2023
Called GenAI-Evalution, you use it for instance to assess the quality of tabular synthetic data. In this case, it measures how faithfully the synthetization mimics the real data it is derived from, by comparing the full joint empirical distributions (ECDF) attached to the two datasets. It works both with categorical and numerical features, and returns […]
Read More
How to Fix a Failing Generative Adversarial Network
- Vincent Granville
- August 12, 2023
In this article, I explore different front-end strategies to improve a generative adversarial network (GAN) that leads to poor synthetization, in the context of tabular data generation. It is well known that tabular data is a lot more challenging than images, when using deep neural networks for synthetization purposes. An algorithm may work very well […]
Read More
Generative AI Technology Break-through: Spectacular Performance of New Synthesizer
- Vincent Granville
- August 2, 2023
Neural network methods have overshadowed all other techniques in the last decade, to the point that alternatives are simply ignored. And for good reasons: techniques such as generative adversarial networks (GAN) proved very successful in some contexts, especially computer vision. Indeed, there has been several attempts to turn every problem and traditional method — regression, […]
Read More
Synthesizing Geospatial Data with A Simple NoGAN Technique
- Vincent Granville
- July 28, 2023
If you regularly read my articles, you know that I developed several different techniques for data synthetization. Many are explained in details in my upcoming book Synthetic Data and Generative AI (Elsevier), available here. It includes generative adversarial networks (GANs), copulas, agent-based modeling, methods based on interpolation, correlated noise mixtures, and more. The technique presented […]
Read More
Sound Generation in Python: Turning Your Data into Music
- Vincent Granville
- July 13, 2023
Not long ago, I published here an article entitled “The Sound that Data Makes”. The goal was turning data — random noise in this case — into music. The hope was that by “listening” to your data, you could gain a different kind of insights, not conveyed by visualizations or tabular summaries. This article is […]
Read More
You must be logged in to post a comment.